著作信息
SCP-CN-2128:高精度
作者:DouglasLiu,作者页在此
配图由我本人制作,修改自以下图片:
Human skull front simplified (bones)-gl, public domain
SCP-CN-2128大致位置
项目编号:SCP-CN-2128
项目等级:Euclid
特殊收容措施:记录定位SCP-CN-2128方式的原始手稿以及SCP-CN-2128-A的详细尸检报告收藏于Site-CN-107高价值资料柜中,禁止未经授权的查阅。经处理的SCP-CN-2128-A的遗体一并储存于Site-CN-107的生物类仓库中。
各地的外勤特工需持续监控社会上的不明原因非正常死亡事件,若发现死亡原因可能与SCP-CN-2128相关,需立刻联系基金会介入调查。
描述:SCP-CN-2128为一人体部位,大致位于额头正面右下方的位置,估计其直径不超过0.1mm。当前确信,若能精确定位一人类个体身上的SCP-CN-2128,并使用一尖锐物体刺中且仅刺中该位置的额骨,该名人类个体的便会立刻死亡。
常态社会及基金会内部的所有研究均未发现SCP-CN-2128所在位置的周边存在任何反常生理结构。根据当前从SCP-CN-2128-A处获得的资料,定位SCP-CN-2128的步骤极为困难,甚至可能超出基金会当前的科技水平。作为示例,以下为当前已知的定位SCP-CN-2128的五十二个步骤中的前六步及最后一步:
步骤1:固定对象当前姿势。
步骤2:记头骨几何中心为 $H_1$ 点,左眼晶状体的几何中心为 $E_1$ 点,将两点连线,在其上取一 $P_1$ 点,使得连线 $H_1P_1$ 与 $P_1E_1$ 的比例为 $\frac{1+\sqrt{5}}{2}$ 。
步骤3:记寰椎几何中心为 $S_1$ 点,作连线 $S_1P_1$,记 $P_1E_1$ 与 $S_1P_1$所形成的平面为 $Z_1$ ,在其上以 $P_1$ 点为圆心,记 $P_1E_1$ 长度的 $\frac{1}{12}$ 为单位长度(下同),作一半径为 $e^{\sqrt{7}}$ 的圆,标记为 $C_1$ 。
步骤4:记圆 $C_1$ 与 $H_1E_1$ 靠近 $H_1$ 的交点为 $P_2$,往头骨右侧方向作垂直于 $Z_1$ 平面,长度为 $2\sqrt{13} + \frac{\pi}{24}$的线段 $P_2P_3$ 。
步骤5:记三角形 $P_1P_3S_1$ 的奈格尔点为 $P_4$,右眼晶状体的几何中心为 $E_2$,作连线 $E_2P_4$。
步骤6:记 $E_2P_4$ 的长度与 $E_1E_2$ 长度的比值为 $L_1$ ,计算下列矩阵的行列式,取其绝对值记为 $L_2$。
(1)
[省略其余步骤]
步骤52:作连线 $S_XH_3$ ,往 $H_3$ 点方向延长 $L_T$ 倍数的 $L_9$ ,然后平行于平面 $Z_R$ 顺时针旋转 $D_5$ 度,继续延长直至延长线与额骨表面相交,相交点即为目标点。
可见,定位SCP-CN-2128的整个过程要求对象完全静止,且涉及大量实数乃至无理数的准确数值。截止至2023年9月20日,项目组已在D级人员身上进行了94次纳米级精度的尝试,均未能成功定位SCP-CN-2128。项目组也已证明该步骤对测量误差的敏感度极大,例如在第三十七步中,操作者需要对先前测量的一系列数值进行一次在步骤中被称为“Pascall-Elipson-32变换”的计算,而该变换已证明可归约为求解一特定双摆系统——经典混沌系统——的拉格朗日量,故极微小的测量误差也会导致最终计算的位置显著偏离SCP-CN-2128的实际位置。
SCP-CN-2128-A为 大学应用数学系教授许 ,于2023年6月25日被发现倒毙在其办公室内,额头右下方位置插有一根14K金针,而记有SCP-CN-2128的定位步骤及其致死效果的手稿则散落在办公室内。除推测死亡时间为约两天前以外,尸检未能确认SCP-CN-2128-A的死亡原因,刑侦部门至今仍未侦破案件。发现的手稿上的笔迹已确认为SCP-CN-2128-A本人,其行文脉络似乎显示此为SCP-CN-2128-A与他人合作的研究项目,但至今未能定位任何人员,已知的同事与亲属等相关人员亦表示未曾听说过SCP-CN-2128-A有在进行类似的研究。
值得注意的是,死亡现场亦发现了SCP-CN-2128-A的手机,解锁后发现其中存在着大量“无来电号码”的通话记录,最后一条为推测死亡时间的约三十分钟前,但与运营商合作定位来电者的尝试亦以失败告终。
附录I - 不明软件:2023年9月22日,项目组意外发现安装于SCP-CN-2128-A手机内的一名为“Cal.”的手机软件并非通过正规渠道安装。该软件为一科学计算器,但存在隐藏的通话功能,可将计算结果作为电话号码拨出。若计算结果为正整数,电话将以常规方式拨出,如 $(50 + 5) \times 2$ 的计算结果可拨打至110。若计算结果非正整数(如 $-1.2$,$\pi ^ 2$ 乃至 $\int_{0}^{2\pi} \frac{\sin(x)}{\sqrt{x}}dx$ ),电话将以一当前未知的方式拨出,并留下一条“无来电号码”的通话记录。
所有试图追踪非正整数号码通话的尝试均以失败告终,当前基金会输入的所有非正整数号码均在约两分四十三秒后回报为空号。由于实数的稠密性,无法进行穷举号码的尝试。
调查仍在持续进行中。